ASYMMETRIC SYNTHESIS OF PERMETHRIC ACID. STEREOCHEMISTRY OF CHIRAL COPPER CARBENOID REACTION

Tadatoshi Aratani^{*}, Yukio Yoneyoshi and Tsuneyuki Nagase Central Research Laboratory, Sumitomo Chemical Co., Ltd. Takatsuki, Osaka 569, Japan

<u>Summary</u> The most effective optical isomer $(l\underline{R}-\underline{cis})$ of permethric acid $(\underline{2}, R = H)$, a potent intermediate in the production of synthetic pyrethroid, was enantioselectively prepared.

Certain kinds of cyclopropanecarboxylic acids are useful as acid components of synthetic pyrethroids.¹ Optically active form of such a compound produces the more selective insecticide, which is more active to the insects and less toxic to the mammals. Among these carboxylic acids are $l\underline{R}$ -trans-chrysanthemic acid ($\underline{1}$, R = H) and $l\underline{R}$ -cis-permethric acid, namely 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid ($\underline{2}$, R = H).

Chiral copper complex catalysed decomposition of diazoalkanes affords optically active products.² We applied this chiral carbenoid reaction to the synthesis of alkyl chrysanthemate <u>1</u> (Eq. 1, X = methyl). An extensive search has been carried out both for the catalyst³ and for the diazo compound⁴ to achieve an e.e. of 90% and the <u>cis/trans</u> ratio of 10/90. The catalyst of the choice was <u>R-1648</u> (<u>6</u>, R₁ = methyl, R₂ = 2-octyloxy-5-<u>t</u>-butylphenyl), a copper chelate derived from optically active amino alcohol <u>5</u>, and the diazo ester employed was 1-menthyl diazoacetate.

685

5

6

Based on these observations, it was anticipated that the replacement of 2,5-dimethyl-2,4-hexadiene $(\underline{3})$ with 1,1-dichloro-4-methyl-1,3-pentadiene $(\underline{4})$ in Eq. 1 would accomplish the asymmetric synthesis of permethric acid $\underline{2}$. Several experiments have been carried out along this line but without success.

<u>1</u>-Menthyl diazoacetate was decomposed in the olefin <u>4</u> in the presence of <u>S</u>-1648, the same catalyst of the opposite configuration, to give the ester <u>2</u> (<u>R</u> = <u>1</u>-menthyl, bp. 130°/0.3 mm) in 52% yield. GC analysis established the isomeric composition: 1<u>R-cis</u>, 12.3%; 1<u>S-cis</u>, 23.6%; 1<u>R-trans</u>, 15.3% and 1<u>S-trans</u>, 48.8%. The e.e. was calculated to be 31% for the <u>cis</u> isomer and 51% for the <u>trans</u> isomer. The same reaction in the use of <u>R</u>-1648 gave the 1<u>R-trans</u> ester <u>2</u> (R = <u>1</u>-menthyl) as the main product (48.4%).

Kuraray explored⁵ another kind of olefin, 2-methyl-5,5,5-trichloro-2pentene ($\underline{7a}$, X = Cl, n = 3), as an acceptor of the carbene moiety (Eq. 2). The cyclopropanated product $\underline{8a}$ (X = Cl, n = 3) is smoothly converted into permethric acid <u>2</u> (R = H) upon treatment with an excess of alkali. Fortunately the employment of the new olefin $\underline{7a}$ in our system proved to provide a stereoselective route⁶ to the most desired acid $1\underline{R}$ -cis <u>2</u>.

Purified ethyl diazoacetate (bp. $42^{\circ}/4.5 \text{ mm}$) was added to a solution of the catalyst <u>S</u>-1648 (0.01 equiv.) in olefin <u>7a</u> (10 equiv.) at 30° in the course of 4.75 hr. A mixture of the adduct <u>8a</u> (R = ethyl, bp. 80°/0.2 mm) and potassium hydroxide (3 equiv.) in 85% ethanol was heated under reflux for 5 hr to give the acid <u>2</u> (R = H) in 92% yield from <u>8a</u>. Its isomeric composition was established⁷ by GC as the corresponding ester <u>2</u> (R = <u>d</u>-2-octyl): 1R-<u>cis</u>, 80.6%; 1<u>S</u>-<u>cis</u>, 3.9%; 1<u>R</u>-<u>trans</u>, 8.6% and 1<u>S</u>-<u>trans</u>, 6.9%. The e.e. was calculated to be 91% for the <u>cis</u> isomer and 11% for the <u>trans</u> isomer.

Similarly <u>1</u>-menthyl diazoacetate was decomposed in the presence of the catalyst <u>S</u>-1648 to give the adduct <u>8a</u> (R = 1-menthyl, bp. 120-140°/0.2 mm), which was directly analysed by GC. The isomeric composition was <u>1R-cis</u>, 81.5%; <u>1S-cis</u>, 3.1%; <u>1R-trans</u>, 9.2% and <u>1S-trans</u>, 6.9%. The e.e. was 93% for the <u>cis</u> isomer and 19% for the <u>trans</u> isomer.

Dramatic change in the product distribution is brought about by the use of monoene $\underline{7a}$ in place of diene $\underline{3}$ or $\underline{4}$. First, the thermodynamically less favourable isomer (<u>cis-8a</u>) predominates over the more favoured one (<u>trans-8a</u>). Second, the preferred enantiomer has the opposite absolute configuration at the C-1 carbon atom. Thus, the catalyst <u>S-1648</u> predominantly gives <u>lS-trans</u> ester (<u>1</u> or <u>2</u>) in Eq. 1 and <u>lR-cis</u> ester (<u>Ra</u>) in Eq. 2.

The crucial role of halogen atoms at the homoallylic position of 7a is evident from the results shown in Table 1. In the reaction of Eq. 2 all the olefins 7b,c,d (X = Cl or Br, n = 1 or 2) gave the products 8b,c,d having the same stereochemistry as 8a.

Table 1. Asymmetric syntheses of haloethyl-cyclopropanecarboxylic acids

Compound	х	n	R	% Yield	cis/trans	cis % e	trans
a	C1	3	Ethyl	59	85/15	91	11
-			<u>l</u> -Menthyl	54	85/15	93	19
b	C1	2	Ethyl	71	88/12	85	31
_			<u>l</u> -Menthyl	57	86/14	90	24
c	C1	1	Ethyl	73	84/16	90	51
			<u>l</u> -Menthyl	59	83/17	*	23
d	Br	1	Ethyl	47	79/21	*	*
			<u>l</u> -Menthyl	56	83/17	95	23

Olefin <u>7b</u> (bp. 58°/20 mm) was prepared by the reduction of <u>7a</u> with $(\underline{n}-Bu)_3$ SnH. Olefin <u>7c</u> (bp. 85°/120 mm) and <u>7d</u> (bp. 48°/20 mm) was obtained by HX treatment of 2-cyclopropyl-2-propanol.

Stereochemical correlation of the product $\underline{8b,c,d}$ with $\underline{8a}$ was carried out through stepwise reduction with (<u>n</u>-Bu)₃SnH.

The products were analysed by GC as \underline{d} -2-octyl esters or \underline{l} -menthyl esters.

*) Complete resolution was not achieved.

<u>Appendix</u> Some of the other cyclopropanecarboxylic acids prepared in our laboratory are listed in Table 2. <u>1</u>-Menthyl diazoacetate was decomposed in each one of the olefins in the presence of the catalyst <u>R</u>- or <u>S</u>-1648. The product, <u>1</u>-menthyl cyclopropanecarboxylate, was directly analysed by GC. The results are summarized in the Table.

Olefin	Catalyst	% e.e		Product	
	Config.	<u>cis/trans</u>	<u>cis</u>	<u>trans</u>	Config.
Styrene	<u>R</u>	14/86	(+)54	(+)69	1 <u>5</u> ,2 <u>5</u>
	<u>s</u>	18/82	(-)78	(-)81	
1-Octene	<u>R</u>	17/83	46	(+)76*	1 <u>5,25</u>
	<u>s</u>	22/78	64	(-)84*	
<u>trans</u> -4-Octene	<u>R</u>			(+) 82	2 <u>5</u> ,3 <u>5</u>
	<u>s</u>			(-)84	
trans-Anethole	<u>R</u>	9/91	44	(+)81	
	S	12/88	60	(-)89	
1,1-Diphenylethylene	R			(+)75*	1 <u>5</u>
	<u>s</u>			(-)64*	
α -Methylstyrene	R	40/60	86	68	
	<u>s</u>	36/64	68	58	

Table 2. Asymmetric syntheses of substituted cyclopropanecarboxylic acids

*) Determined by GC as d-2-octyl ester.

References

- "Synthetic Pyrethroids" (edited by M. Elliott), ACS Symposium Series No. 42 (1977).
- H. Nozaki, H. Takaya, S. Moriuti and R. Noyori, <u>Tetrahedron</u>, <u>24</u>, 3655 (1968).
- 3. T. Aratani, Y. Yoneyoshi and T. Nagase, Tetrahedron Lett., 1707 (1975).
- 4. Idem, Ibid., 2599 (1977).
- 5. Kuraray Co., Ltd., Japan. Kokai Tokkyo Koho, 76-146,442.
- Recent methods published include C. E. Hatch, III, J. S. Baum, T. Takashima and K. Kondo, J. Org. Chem., 45, 3281 (1980) and Ciba-Geigy A.-G., European Pat. Appl., 12,722 (1980).
- 7. M. Horiba, A. Kobayashi and A. Murano, Agric. Biol. Chem., 41, 581 (1977).
- Similar tendency was observed by I.C.I.'s chemists in the case of 5,5-dichloro-2-methyl-6,6,6-trifluoro-2-hexene; D. Holland, D. A. Laidler and D. J. Milner, J. Mol. Cat., <u>11</u>, 119 (1981).

(Received in Japan 2 November 1981)